Exam Stochastic Processes

18 June 2021

- You have from 08.30 until 12.00. This includes the time needed to take pictures of your work and upload it to nestor dropbox.
- It is absolutely not allowed to use calculators, phones, computers, books, notes, the help of others or any other aids.
- During the entire time you should be connected to the video call and be on camera, with sound turned on. Failure to do this will count as cheating.

Exercise 1 (20 pts)

Consider the Galton-Watson process with offspring distribution given by $\mathbb{P}(X=k)=(1-p) p^{k}$ for $k=0,1,2, \ldots$ As usual, Z_{t} denotes the number of individuals in generation t and $Z_{\text {tot }}:=$ $Z_{0}+Z_{1}+\ldots$ the total number of all individuals in all generations together.
Determine $\mathbb{P}\left(Z_{1}=k \mid Z_{\mathrm{tot}}<\infty\right)$ for every $k \in \mathbb{Z}_{\geq 0}$.
Clearly justify all your steps and state any results from the lecture notes or tutorial sheets you are using.

Exercise 2 (20 pts)

Consider the following network, where all conductances are one and a, z are as indicated.

Determine the effective resistance and the escape probability. Make sure to clearly justify all your steps.
(Hint: What can you say about the voltages of the neighbours of a? And what about the voltages of the neighbours of z ? It may help draw the network differently.)

Exercise 3 (20 pts)

Let X, Y, U, V be independent random variables taking values in \mathbb{Z}. Show that

$$
d_{\mathrm{TV}}(X+Y, U+V) \leq d_{\mathrm{TV}}(X, U)+d_{\mathrm{TV}}(Y, V)
$$

Exercise 4 (20 pts)

We consider the following variant of Pólya's urn model. Initially there are r red balls and b blue balls in the urn. We repeatedly grab a ball uniformly at random from the urn, put it back and add c balls of the same colour. Let R_{n} denote the number of red balls after the n-th time we've done this, and let

$$
X_{n}:=\frac{R_{n}}{c \cdot n+r+b},
$$

denote the corresponding fraction of red balls.
Show that $\left(X_{n}\right)_{n}$ is a martingale (wrt. itself).

Exercise 5 (20 pts)

You want to cross a busy street. The times when the cars pass in front of you behave like a Poisson process of intensity λ, and in order to cross you will need an interval of time of length $\geq a$ during which no cars pass.

Let T be the (random) time from now until you will have managed to cross the street. Observe for instance that $\mathbb{P}(T=a)=\mathbb{P}($ no cars in $[0, a])=e^{-\lambda a}$.
Show that $\mathbb{E} T=\frac{1}{\lambda} \cdot\left(e^{\lambda a}-1\right)$.
(Hint: It helps to use the formulation of the Poisson process in terms of interarrival times. What distribution does the number N of cars that pass until you cross have? What is the expected time you wait until the first car, given that you cannot pass before the first car? What is $\mathbb{E}(T \mid N=n)$?)

